博客
关于我
2021-03-03
阅读量:662 次
发布时间:2019-03-15

本文共 1022 字,大约阅读时间需要 3 分钟。

Hive性能调优实践

1. 执行计划与Stage分析

在Hive中执行优化时,了解执行计划是关键。通过查看执行计划,可以详细了解每个Stage(Map和Reduce)的配置信息。每个Stage对应一个JobTracker启动的task,并由Map和Reduce处理数据。理解Stage之间的依赖关系(Stage Dependencies)有助于理清数据处理流程。

2. 分析资源需求与优化Map任务

合理设置Map任务的目标是避免资源争用,在处理小文件或多文件时,可以通过减少Map的数量来优化。此外,确保文件分片大小与集群块大小相匹配,可以避免不必要的Map启动。为了进一步优化,可以通过以下设置来控制Map数量:

[\begin{aligned}\text{default_num} &= \frac{\text{总文件大小}}{\text{块大小}};\\text{goal_num} &= \text{mapred.map.tasks(用户定义的Map数量);}\\text{split_num} &= \frac{\text{总文件大小}}{\max(\text{mapred.min.split.size,块大小})};\\text{compute_map_num} &= \min(\text{split_num,最大值(default_num, goal_num))。\\end{aligned}]

通过合理设置mapred.map.tasks和mapred.min.split.size,可以有效控制Map任务的数量,从而避免资源瓶颈。

3. Reduce阶段优化

Shuffle阶段是Reduce阶段的关键瓶颈,phase并行优化可以显著提升性能。此外,通过压缩中间结果数据可以减少IO操作,提升处理速度。

4. 数据倾斜与优化方法

数据倾斜包括多维聚合引起的数据膨胀和大文件压缩导致的问题。建议通过合并小文件和调整压缩算法(如使用支持分割压缩如Bzip2)来减少数据倾斜。同时,尽量优化Reduce的内存配置,避免内存压力。

5. 其他优化策略

为了提升整体性能,可以启用向量化执行模式,优化Join操作和优化Phase并行处理。通过开启mapjoin和合并小文件,可以优化处理流程,提升资源利用率。

通过以上优化方法,可以系统性地提升Hive的性能表现。此外,根据业务需求动态调整配置,确保最佳的资源分配和数据处理效率。

转载地址:http://seqmz.baihongyu.com/

你可能感兴趣的文章
netcat的端口转发功能的实现
查看>>
Netcraft报告: let's encrypt和Comodo发布成千上万的网络钓鱼证书
查看>>
Netem功能
查看>>
netfilter应用场景
查看>>
Netflix:当你按下“播放”的时候发生了什么?
查看>>
Netflix推荐系统:从评分预测到消费者法则
查看>>
netframework 4.0内置处理JSON对象
查看>>
Netgear WN604 downloadFile.php 信息泄露漏洞复现(CVE-2024-6646)
查看>>
Netgear wndr3700v2 路由器刷OpenWrt打造全能服务器(十一)备份
查看>>
netlink2.6.32内核实现源码
查看>>
netmiko 自动判断设备类型python_Python netmiko模块的使用
查看>>
NetMizer 日志管理系统 多处前台RCE漏洞复现
查看>>
NetMizer-日志管理系统 dologin.php SQL注入漏洞复现(XVE-2024-37672)
查看>>
Netpas:不一样的SD-WAN+ 保障网络通讯品质
查看>>
netron工具简单使用
查看>>
NetScaler MPX Gateway Configuration
查看>>
NetScaler的常用配置
查看>>
netsh advfirewall
查看>>
NETSH WINSOCK RESET这条命令的含义和作用?
查看>>
netstat kill
查看>>